
NAG C Library Function Document

nag_dtrexc (f08qfc)

1 Purpose

nag_dtrexc (f08qfc) reorders the Schur factorization of a real general matrix.

2 Specification

void nag_dtrexc (Nag_OrderType order, Nag_ComputeQType compq, Integer n,
double t[], Integer pdt, double q[], Integer pdq, Integer *ifst, Integer *ilst,
NagError *fail)

3 Description

nag_dtrexc (f08qfc) reorders the Schur factorization of a real general matrix A ¼ QTQT , so that the
diagonal element or block of T with row index ifst is moved to row ilst.

The reordered Schur form ~TT is computed by an orthogonal similarity transformation: ~TT ¼ ZTTZ.

Optionally the updated matrix ~QQ of Schur vectors is computed as ~QQ ¼ QZ, giving A ¼ ~QQ~TT ~QQT .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: compq – Nag_ComputeQType Input

On entry: indicates whether the matrix Q of Schur vectors is to be updated, as follows:

if compq ¼ Nag UpdateSchur, the matrix Q of Schur vectors is updated;

if compq ¼ Nag NotQ, no Schur vectors are updated.

Constraint: compq ¼ Nag UpdateSchur or Nag NotQ.

3: n – Integer Input

On entry: n, the order of the matrix T .

Constraint: n � 0.

4: t½dim� – double Input/Output

Note: the dimension, dim, of the array t must be at least maxð1; pdt� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix T is stored in t½ðj� 1Þ � pdtþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix T is stored in t½ði� 1Þ � pdtþ j� 1�.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qfc

[NP3645/7] f08qfc.1

On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by
nag_dhseqr (f08pec).

On exit: T is overwritten by the updated matrix ~TT . See also Section 8.

5: pdt – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt � maxð1;nÞ.

6: q½dim� – double Input/Output

Note: the dimension, dim, of the array q must be at least

maxð1; pdq� nÞ when compq ¼ Nag UpdateSchur;

1 when compq ¼ Nag NotQ.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix Q is stored in q½ðj� 1Þ � pdqþ i� 1�
and if order ¼ Nag RowMajor, the ði; jÞth e lement of the matr ix Q i s s tored in

q½ði� 1Þ � pdqþ j� 1�.
On entry: if compq ¼ Nag UpdateSchur, q must contain the n by n orthogonal matrix Q of Schur
vectors.

On exit: if compq ¼ Nag UpdateSchur, q contains the updated matrix of Schur vectors.

q is not referenced if compq ¼ Nag NotQ.

7: pdq – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:

if compq ¼ Nag UpdateSchur, pdq � maxð1;nÞ;
if compq ¼ Nag NotQ, pdq � 1.

8: ifst – Integer * Input/Output

9: ilst – Integer * Input/Output

On entry: ifst and ilst must specify the reordering of the diagonal elements or blocks of T . The
element or block with row index ifst is moved to row ilst by a sequence of exchanges between
adjacent elements or blocks.

On exit: if ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the
first row. ilst always points to the first row of the block in its final position (which may differ from
its input value by �1).

Constraint: 1 � ifst � n and 1 � ilst � n.

10: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pdt ¼ hvaluei.
Constraint: pdt > 0.

f08qfc NAG C Library Manual

f08qfc.2 [NP3645/7]

On entry, pdq ¼ hvaluei.
Constraint: pdq > 0.

NE_INT_2

On entry, pdt ¼ hvaluei, n ¼ hvaluei.
Constraint: pdt � maxð1;nÞ.

NE_INT_3

On entry, n = hvaluei, ifst = hvaluei, ilst = hvaluei.
Constraint: 1 � ifst � n and 1 � ilst � n.

NE_ENUM_INT_2

On entry, compq ¼ hvaluei, n ¼ hvaluei, pdq ¼ hvaluei.
Constraint: if compq ¼ Nag UpdateSchur, pdq � maxð1;nÞ;
if compq ¼ Nag NotQ, pdq � 1.

NE_EXCHANGE

Two adjacent diagonal elements or blocks could not be successfully exchanged. This error can only
occur if the exchange involves at least one 2 by 2 block; it implies that the problem is very ill-
conditioned, and that the eigenvalues of the two blocks are very close. On exit, T may have been
partially reordered, and ilst points to the first row of the current position of the block being moved;
Q (if requested) is updated consistently with T .

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix ~TT is exactly similar to a matrix T þ E, where

kEk2 ¼ Oð�ÞkTk2;

and � is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general
changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is
sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block
to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real. The
values of real eigenvalues however are never changed by the re-ordering.

8 Further Comments

The total number of floating-point operations is approximately 6nr if compq ¼ Nag NotQ, and 12nr if
compq ¼ Nag UpdateSchur, where r ¼ jifst� ilstj.

The input matrix T must be in canonical Schur form, as is the output matrix ~TT . This has the following
structure.

If all the computed eigenvalues are real, T is upper triangular and its diagonal elements are the
eigenvalues.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qfc

[NP3645/7] f08qfc.3

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal blocks.
Each diagonal block has the form

tii ti;iþ1

tiþ1;i tiþ1;iþ1

��
¼ � �

� �

��

where �� < 0. The corresponding eigenvalues are ��
ffiffiffiffiffiffi
��

p
.

The complex analogue of this function is nag_ztrexc (f08qtc).

9 Example

To reorder the Schur factorization of the matrix T so that the 2 by 2 block with row index 2 is moved to
row 1, where

T ¼

0:80 �0:11 0:01 0:03
0:00 �0:10 0:25 0:35
0:00 �0:65 �0:10 0:20
0:00 0:00 0:00 �0:10

1
CCA

0
BB@ :

9.1 Program Text

/* nag_dtrexc (f08qfc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ifst, ilst, j, n, pdq, pdt;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *q=0, *t=0;

#ifdef NAG_COLUMN_MAJOR
#define T(I,J) t[(J-1)*pdt + I - 1]

order = Nag_ColMajor;
#else
#define T(I,J) t[(I-1)*pdt + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08qfc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pdq = 1;
pdt = n;

#else
pdq = 1;
pdt = n;

#endif

/* Allocate memory */

f08qfc NAG C Library Manual

f08qfc.4 [NP3645/7]

if (!(q = NAG_ALLOC(1 * 1, double)) ||
!(t = NAG_ALLOC(n * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read T from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &T(i,j));
}

Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &ifst, &ilst);

/* Reorder the Schur factorization T */
f08qfc(order, Nag_NotQ, n, t, pdt, q, pdq, &ifst, &ilst, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08qfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print reordered Schur form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

t, pdt, "Reordered Schur form", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (q) NAG_FREE(q);
if (t) NAG_FREE(t);

return exit_status;
}

9.2 Program Data

f08qfc Example Program Data
4 :Value of N
0.80 -0.11 0.01 0.03
0.00 -0.10 0.25 0.35
0.00 -0.65 -0.10 0.20
0.00 0.00 0.00 -0.10 :End of matrix T
2 1 :Values of IFST and ILST

9.3 Program Results

f08qfc Example Program Results

Reordered Schur form
1 2 3 4

1 -0.1000 -0.6463 0.0874 0.2010
2 0.2514 -0.1000 0.0927 0.3505
3 0.0000 0.0000 0.8000 -0.0117
4 0.0000 0.0000 0.0000 -0.1000

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qfc

[NP3645/7] f08qfc.5 (last)

	f08qfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	compq
	n
	t
	pdt
	q
	pdq
	ifst
	ilst
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_EXCHANGE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

